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1. Executive Summary
1.1 Purpose and Scope
Performance optimization is critical for DLT pipelines that process large data volumes or have strict latency requirements. This guide provides comprehensive techniques for tuning DLT pipeline performance, covering cluster configuration, Photon acceleration, streaming optimization, and profiling strategies.
1.2 Performance Goals
Define clear performance objectives before optimization:
	Metric
	Description
	Typical Targets

	**Throughput**
	Records processed per second
	100K - 10M records/sec

	**Latency**
	End-to-end processing time
	Seconds to minutes

	**Cost Efficiency**
	DBU per million records
	Varies by workload

	**Resource Utilization**
	CPU/Memory usage
	70-85% optimal



1.3 Performance Optimization Hierarchy
Optimize in this order for maximum impact:
┌─────────────────────────────────────────────────────────────────────────────┐
│                    PERFORMANCE OPTIMIZATION HIERARCHY                        │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   1. DATA ARCHITECTURE (Highest Impact)                                     │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  • Table design and partitioning                                     │  │
│   │  • Data formats and compression                                      │  │
│   │  • Schema optimization                                               │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   2. TRANSFORMATION LOGIC                                                   │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  • Query optimization                                                │  │
│   │  • Join strategies                                                   │  │
│   │  • Aggregation patterns                                              │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   3. CLUSTER CONFIGURATION                                                  │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  • Instance types and sizing                                         │  │
│   │  • Autoscaling settings                                              │  │
│   │  • Spark configuration                                               │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   4. RUNTIME OPTIMIZATION (Lowest Impact, Easiest)                         │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  • Photon enablement                                                 │  │
│   │  • Caching strategies                                                │  │
│   │  • I/O tuning                                                        │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2. Performance Architecture
2.1 DLT Execution Model
Understanding how DLT executes pipelines helps identify optimization opportunities:
┌─────────────────────────────────────────────────────────────────────────────┐
│                        DLT EXECUTION FLOW                                    │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   Pipeline Start                                                            │
│        │                                                                    │
│        ▼                                                                    │
│   ┌─────────────┐                                                          │
│   │   Parse     │  Read notebook, resolve dependencies                     │
│   │   Pipeline  │  (Usually fast, ~seconds)                                │
│   └──────┬──────┘                                                          │
│          │                                                                  │
│          ▼                                                                  │
│   ┌─────────────┐                                                          │
│   │   Plan      │  Build execution plan, optimize queries                  │
│   │   Execution │  (Can be slow for complex pipelines)                     │
│   └──────┬──────┘                                                          │
│          │                                                                  │
│          ▼                                                                  │
│   ┌─────────────┐                                                          │
│   │   Execute   │  Run transformations in dependency order                 │
│   │   Tables    │  (Most time spent here)                                  │
│   └──────┬──────┘                                                          │
│          │                                                                  │
│          ▼                                                                  │
│   ┌─────────────┐                                                          │
│   │   Commit    │  Write data, update metadata                             │
│   │   Results   │  (I/O bound)                                             │
│   └─────────────┘                                                          │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2.2 Performance Bottleneck Categories
	Category
	Symptoms
	Common Causes

	**CPU Bound**
	High CPU utilization, slow transformations
	Complex calculations, inefficient UDFs

	**Memory Bound**
	OOM errors, spill to disk
	Large aggregations, insufficient memory

	**I/O Bound**
	Low CPU, slow reads/writes
	Small files, inefficient formats

	**Network Bound**
	Shuffle spill, slow joins
	Large shuffles, data skew

	**Planning Bound**
	Long optimization time
	Complex queries, many tables



3. Cluster Configuration
3.1 Instance Type Selection
Choose instance types based on workload characteristics:
	Workload Type
	Recommended Instance
	Rationale

	**General ETL**
	i3.2xlarge / Standard_L8s_v2
	Balanced compute and local SSD

	**Memory-intensive**
	r5.4xlarge / Standard_E16s_v5
	High memory for large joins

	**CPU-intensive**
	c5.4xlarge / Standard_F16s_v2
	High CPU for transformations

	**Large shuffles**
	i3.4xlarge / Standard_L16s_v2
	Fast local disk for spill



3.2 Cluster Sizing Guidelines
def calculate_cluster_size(data_volume_gb, complexity_factor=1.0):
    """
    Calculate recommended cluster size based on data volume.

    Parameters:
    - data_volume_gb: Daily data volume to process
    - complexity_factor: 1.0 for simple ETL, 2.0+ for complex joins/aggregations

    Returns recommended cluster configuration.
    """
    # Base calculation: 1 worker per 50-100 GB
    base_workers = max(2, int(data_volume_gb / 75 * complexity_factor))

    # Memory per worker recommendation
    memory_per_worker_gb = max(32, min(128, data_volume_gb / base_workers * 2))

    return {
        "min_workers": max(2, base_workers // 2),
        "max_workers": base_workers * 2,
        "recommended_workers": base_workers,
        "memory_per_worker_gb": memory_per_worker_gb,
        "instance_recommendation": get_instance_type(memory_per_worker_gb)
    }


# Example usage
config = calculate_cluster_size(data_volume_gb=500, complexity_factor=1.5)
# Returns: min=5, max=20, recommended=10, memory=67GB per worker
3.3 Autoscaling Configuration
{
  "clusters": [
    {
      "label": "default",
      "autoscale": {
        "min_workers": 2,
        "max_workers": 20,
        "mode": "ENHANCED"
      },
      "node_type_id": "i3.2xlarge",
      "driver_node_type_id": "i3.2xlarge",
      "spark_conf": {
        "spark.databricks.adaptive.autoOptimizeShuffle.enabled": "true"
      }
    }
  ]
}
Autoscaling Modes:
	Mode
	Behavior
	Best For

	**LEGACY**
	Basic scale-up/down
	Simple workloads

	**ENHANCED**
	Faster scaling, better optimization
	Production workloads



3.4 Spark Configuration for DLT
{
  "spark_conf": {
    // Memory management
    "spark.executor.memory": "24g",
    "spark.driver.memory": "16g",
    "spark.memory.fraction": "0.7",

    // Shuffle optimization
    "spark.sql.shuffle.partitions": "auto",
    "spark.sql.adaptive.enabled": "true",
    "spark.sql.adaptive.coalescePartitions.enabled": "true",
    "spark.sql.adaptive.skewJoin.enabled": "true",

    // Delta optimization
    "spark.databricks.delta.optimizeWrite.enabled": "true",
    "spark.databricks.delta.autoCompact.enabled": "true",

    // I/O optimization
    "spark.sql.files.maxPartitionBytes": "134217728",
    "spark.databricks.io.cache.enabled": "true"
  }
}
4. Photon Optimization
4.1 Understanding Photon
Photon is Databricks' native vectorized query engine that significantly accelerates SQL and DataFrame operations. It provides:
Vectorized Execution: Processes data in batches rather than row-by-row
Native Code: C++ implementation bypasses JVM overhead
Automatic Acceleration: No code changes required
4.2 Photon Performance Gains
	Operation Type
	Typical Speedup
	Notes

	Scans and filters
	2-3x
	Best for selective filters

	Aggregations
	3-5x
	Especially COUNT, SUM, AVG

	Joins
	2-4x
	Hash joins benefit most

	String operations
	3-8x
	Significant improvement

	Complex expressions
	2-5x
	Depends on expression type



4.3 Enabling Photon
{
  "name": "photon-enabled-pipeline",
  "photon": true,
  "clusters": [
    {
      "label": "default",
      "node_type_id": "i3.2xlarge",
      "spark_conf": {
        "spark.databricks.photon.enabled": "true",
        "spark.databricks.photon.allDataSources.enabled": "true"
      }
    }
  ]
}
4.4 Photon-Friendly Patterns
# GOOD: Photon-accelerated operations
@dlt.table(name="photon_optimized")
def photon_optimized():
    """
    Transformations that benefit from Photon acceleration.
    """
    return (
        dlt.read("source_table")
        # Filter early - highly accelerated
        .filter(F.col("status") == "ACTIVE")
        .filter(F.col("amount") > 0)

        # Simple aggregations - very fast with Photon
        .groupBy("customer_id", "product_category")
        .agg(
            F.count("*").alias("transaction_count"),
            F.sum("amount").alias("total_amount"),
            F.avg("amount").alias("avg_amount")
        )

        # String operations - significant speedup
        .withColumn("category_upper", F.upper(F.col("product_category")))
    )


# AVOID: Operations that don't benefit from Photon
@dlt.table(name="limited_photon_benefit")
def limited_photon_benefit():
    """
    Operations with limited Photon acceleration.
    Consider alternatives where possible.
    """
    return (
        dlt.read("source_table")
        # Python UDFs don't use Photon
        .withColumn("custom_field", my_python_udf(F.col("input")))

        # Complex nested operations may not fully accelerate
        .withColumn("nested_extract",
            F.col("nested_struct.deeply.nested.field")
        )
    )
4.5 Monitoring Photon Usage
-- Check Photon execution in query plans
EXPLAIN EXTENDED
SELECT customer_id, SUM(amount)
FROM LIVE.silver_transactions
GROUP BY customer_id;

-- Look for "PhotonGroupingAgg" and "PhotonScan" in the plan
5. Streaming Optimization
5.1 Streaming Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    STREAMING OPTIMIZATION POINTS                             │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   Source                    Processing                   Sink               │
│   ┌─────────────┐          ┌─────────────┐          ┌─────────────┐        │
│   │  Kafka/     │ ──────▶  │  Transform  │ ──────▶  │  Delta      │        │
│   │  Files      │          │  & Filter   │          │  Tables     │        │
│   └─────────────┘          └─────────────┘          └─────────────┘        │
│                                                                              │
│   Optimization:            Optimization:             Optimization:          │
│   • Batch size             • Partition count         • File size           │
│   • Parallelism            • Memory allocation       • Compaction          │
│   • Checkpointing          • State management        • Z-ordering          │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
5.2 Trigger Interval Tuning
# For near real-time processing (seconds latency)
@dlt.table(name="realtime_events")
def realtime_events():
    """
    Low-latency streaming with frequent micro-batches.
    Trade-off: Higher overhead, lower throughput.
    """
    return (
        spark.readStream
        .format("kafka")
        .option("maxOffsetsPerTrigger", "10000")  # Smaller batches
        .load()
    )


# For high-throughput processing (minutes latency)
@dlt.table(name="batch_events")
def batch_events():
    """
    High-throughput streaming with larger batches.
    Trade-off: Higher latency, better efficiency.
    """
    return (
        spark.readStream
        .format("kafka")
        .option("maxOffsetsPerTrigger", "1000000")  # Larger batches
        .load()
    )
5.3 State Management Optimization
For stateful operations (aggregations, deduplication), optimize state management:
# Pipeline configuration for stateful operations
{
    "spark_conf": {
        # Use RocksDB for state (better for large state)
        "spark.sql.streaming.stateStore.providerClass":
            "com.databricks.sql.streaming.state.RocksDBStateStoreProvider",

        # Checkpoint optimization
        "spark.sql.streaming.stateStore.rocksdb.compactOnCommit": "true",

        # State cleanup
        "spark.sql.streaming.stateStore.maintenanceInterval": "30s"
    }
}
5.4 Watermark Configuration
@dlt.table(name="windowed_aggregates")
def windowed_aggregates():
    """
    Configure watermarks for late data handling.

    Watermark determines:
    - How late data can arrive and still be processed
    - When state for old windows can be cleaned up
    """
    return (
        dlt.read_stream("silver_events")
        # Allow events up to 1 hour late
        .withWatermark("event_timestamp", "1 hour")
        .groupBy(
            F.window("event_timestamp", "15 minutes"),
            "event_type"
        )
        .agg(
            F.count("*").alias("event_count"),
            F.sum("value").alias("total_value")
        )
    )
6. Transformation Optimization
6.1 Filter Pushdown
Apply filters as early as possible in the transformation chain:
# GOOD: Filter early
@dlt.table(name="filtered_early")
def filtered_early():
    """
    Filter before expensive operations to reduce data volume.
    """
    return (
        dlt.read_stream("bronze_events")
        # Filter FIRST
        .filter(F.col("event_type") == "PURCHASE")
        .filter(F.col("amount") > 0)
        # Then transform
        .select(
            "user_id",
            "amount",
            F.upper("product_name").alias("product_name")
        )
        # Then aggregate
        .groupBy("user_id")
        .agg(F.sum("amount").alias("total_purchases"))
    )


# BAD: Filter late
@dlt.table(name="filtered_late")
def filtered_late():
    """
    Filtering after aggregation is inefficient.
    """
    return (
        dlt.read_stream("bronze_events")
        # Transform all records
        .select(
            "user_id",
            "event_type",
            "amount",
            F.upper("product_name").alias("product_name")
        )
        # Aggregate all records
        .groupBy("user_id", "event_type")
        .agg(F.sum("amount").alias("total"))
        # Then filter - too late!
        .filter(F.col("event_type") == "PURCHASE")
    )
6.2 Join Optimization
# GOOD: Broadcast small tables
@dlt.table(name="enriched_orders")
def enriched_orders():
    """
    Use broadcast joins for small dimension tables.
    """
    orders = dlt.read_stream("silver_orders")
    # Small dimension table - broadcast it
    products = F.broadcast(dlt.read("dim_products"))

    return orders.join(products, "product_id", "left")


# GOOD: Pre-filter before joins
@dlt.table(name="filtered_join")
def filtered_join():
    """
    Filter both sides before joining to reduce shuffle.
    """
    orders = (
        dlt.read_stream("silver_orders")
        .filter(F.col("order_date") >= "2025-01-01")  # Filter left
    )

    customers = (
        dlt.read("dim_customers")
        .filter(F.col("status") == "ACTIVE")  # Filter right
    )

    return orders.join(customers, "customer_id", "inner")


# Configure join hints in cluster config
{
    "spark_conf": {
        "spark.sql.autoBroadcastJoinThreshold": "104857600",  # 100MB
        "spark.sql.adaptive.autoBroadcastJoinThreshold": "104857600"
    }
}
6.3 Aggregation Optimization
# GOOD: Two-stage aggregation for high-cardinality grouping
@dlt.table(name="optimized_aggregation")
def optimized_aggregation():
    """
    Use two-stage aggregation to reduce shuffle data.

    Stage 1: Partial aggregation per partition
    Stage 2: Final aggregation across partitions
    """
    return (
        dlt.read_stream("silver_events")
        # Add partition key for local pre-aggregation
        .withColumn("partition_key", F.spark_partition_id())
        .groupBy("customer_id", "partition_key")
        .agg(
            F.sum("amount").alias("partial_sum"),
            F.count("*").alias("partial_count")
        )
        # Final aggregation
        .groupBy("customer_id")
        .agg(
            F.sum("partial_sum").alias("total_amount"),
            F.sum("partial_count").alias("total_count")
        )
    )


# GOOD: Use approximate aggregations for analytics
@dlt.table(name="approximate_metrics")
def approximate_metrics():
    """
    Use approximate functions for analytics where exact values aren't required.
    Significantly faster for high-cardinality data.
    """
    return (
        dlt.read("silver_events")
        .groupBy("event_date")
        .agg(
            F.count("*").alias("total_events"),
            # Approximate distinct count - much faster
            F.approx_count_distinct("user_id").alias("approx_unique_users"),
            # Approximate percentiles
            F.percentile_approx("response_time", 0.95).alias("p95_response_time")
        )
    )
6.4 Avoid Expensive Operations
# AVOID: Expensive operations that prevent optimization

# BAD: UDFs break Photon and optimization
@F.udf(returnType=StringType())
def expensive_udf(value):
    return process_value(value)

# GOOD: Use built-in functions instead
# Most string/date/math operations have built-in equivalents


# BAD: Explode creates data explosion
@dlt.table(name="exploded")
def exploded():
    return (
        dlt.read("source")
        .withColumn("item", F.explode("items"))  # Can 100x row count
    )

# GOOD: Process arrays without exploding when possible
@dlt.table(name="array_processed")
def array_processed():
    return (
        dlt.read("source")
        .withColumn("item_count", F.size("items"))
        .withColumn("first_item", F.element_at("items", 1))
        # Use transform for array operations
        .withColumn("item_ids", F.transform("items", lambda x: x.id))
    )
7. I/O Optimization
7.1 File Size Optimization
# Configure optimal file sizes
{
    "spark_conf": {
        # Target file size (128MB is good default)
        "spark.databricks.delta.optimizeWrite.fileSize": "134217728",

        # Enable auto-optimization
        "spark.databricks.delta.optimizeWrite.enabled": "true",
        "spark.databricks.delta.autoCompact.enabled": "true"
    }
}


# Table-level configuration
@dlt.table(
    name="optimized_table",
    table_properties={
        "delta.targetFileSize": "134217728",
        "pipelines.autoOptimize.managed": "true",
        "pipelines.autoOptimize.zOrderCols": "customer_id,order_date"
    }
)
def optimized_table():
    return dlt.read_stream("source")
7.2 Partition Strategy
# GOOD: Partition large tables appropriately
@dlt.table(
    name="partitioned_events",
    partition_cols=["event_date"]
)
def partitioned_events():
    """
    Partition by date for time-series data.

    Guidelines:
    - Target 100MB-1GB per partition
    - Use columns frequently filtered in queries
    - Avoid high-cardinality partition columns
    """
    return (
        dlt.read_stream("bronze_events")
        .withColumn("event_date", F.to_date("event_timestamp"))
    )


# Calculate optimal partition count
def optimal_partitions(data_size_gb, target_partition_size_mb=256):
    """
    Calculate optimal number of partitions.
    """
    target_size_gb = target_partition_size_mb / 1024
    return max(1, int(data_size_gb / target_size_gb))
7.3 Compression Configuration
# Configure compression for different scenarios
{
    "spark_conf": {
        # For balanced performance (default)
        "spark.sql.parquet.compression.codec": "snappy",

        # For better compression ratio (slower)
        # "spark.sql.parquet.compression.codec": "zstd",

        # For fastest writes (larger files)
        # "spark.sql.parquet.compression.codec": "lz4"
    }
}
7.4 Caching Strategy
# Use DLT views for intermediate caching
@dlt.view(name="cached_intermediate")
def cached_intermediate():
    """
    Views act as optimization boundaries.
    DLT may materialize views when beneficial.
    """
    return (
        dlt.read_stream("bronze_data")
        .filter(F.col("status") == "ACTIVE")
        .select("id", "value", "timestamp")
    )


# Multiple downstream tables can read from the view
@dlt.table(name="aggregated_a")
def aggregated_a():
    return dlt.read_stream("cached_intermediate").groupBy("id").count()


@dlt.table(name="aggregated_b")
def aggregated_b():
    return dlt.read_stream("cached_intermediate").groupBy("timestamp").sum("value")
8. Memory Management
8.1 Memory Configuration
# Cluster memory configuration
{
    "spark_conf": {
        # Executor memory (70-80% of node memory)
        "spark.executor.memory": "24g",

        # Driver memory (for collect operations)
        "spark.driver.memory": "16g",

        # Memory fraction for execution vs storage
        "spark.memory.fraction": "0.7",
        "spark.memory.storageFraction": "0.3",

        # Off-heap memory for large operations
        "spark.memory.offHeap.enabled": "true",
        "spark.memory.offHeap.size": "8g"
    }
}
8.2 Avoiding Memory Issues
# GOOD: Use streaming aggregation instead of collect
@dlt.table(name="streaming_agg")
def streaming_agg():
    """
    Streaming aggregation scales to any data size.
    """
    return (
        dlt.read_stream("source")
        .groupBy("key")
        .agg(F.sum("value"))
    )


# BAD: Avoid collect() and toPandas() on large datasets
# These bring all data to driver memory
# df.collect()  # DON'T DO THIS
# df.toPandas() # DON'T DO THIS


# GOOD: Limit data before collection
def get_sample_for_analysis():
    return (
        spark.table("large_table")
        .limit(10000)  # Limit first
        .toPandas()    # Then collect
    )


# GOOD: Use coalesce to reduce memory pressure
@dlt.table(name="coalesced_output")
def coalesced_output():
    """
    Reduce partition count before writing to avoid small files.
    """
    return (
        dlt.read_stream("source")
        .coalesce(10)  # Reduce to 10 partitions
    )
8.3 Handling Skewed Data
# Enable adaptive query execution for skew handling
{
    "spark_conf": {
        "spark.sql.adaptive.enabled": "true",
        "spark.sql.adaptive.skewJoin.enabled": "true",
        "spark.sql.adaptive.skewJoin.skewedPartitionFactor": "5",
        "spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes": "268435456"
    }
}


# Manual skew handling with salting
@dlt.table(name="skew_handled")
def skew_handled():
    """
    Handle skewed joins using salting technique.
    """
    # Large table with skewed key
    orders = (
        dlt.read("silver_orders")
        .withColumn("salt", F.floor(F.rand() * 10))  # Add salt
        .withColumn("salted_customer_id",
            F.concat(F.col("customer_id"), F.lit("_"), F.col("salt"))
        )
    )

    # Small dimension table - explode to match salted keys
    customers = (
        dlt.read("dim_customers")
        .withColumn("salts", F.array([F.lit(i) for i in range(10)]))
        .withColumn("salt", F.explode("salts"))
        .withColumn("salted_customer_id",
            F.concat(F.col("customer_id"), F.lit("_"), F.col("salt"))
        )
    )

    return (
        orders.join(customers, "salted_customer_id", "left")
        .drop("salt", "salted_customer_id", "salts")
    )
9. Auto Loader Tuning
9.1 Auto Loader Configuration
@dlt.table(name="optimized_autoloader")
def optimized_autoloader():
    """
    Optimized Auto Loader configuration for high-throughput ingestion.
    """
    return (
        spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")

        # Schema management
        .option("cloudFiles.schemaLocation", "/checkpoints/schema")
        .option("cloudFiles.inferColumnTypes", "true")
        .option("cloudFiles.schemaEvolutionMode", "addNewColumns")

        # Performance tuning
        .option("cloudFiles.maxFilesPerTrigger", "1000")
        .option("cloudFiles.maxBytesPerTrigger", "10g")

        # Use notifications for faster file discovery (recommended)
        .option("cloudFiles.useNotifications", "true")

        # Parallelism
        .option("cloudFiles.maxPartitionBytes", "134217728")

        .load("/mnt/landing/data/")
    )
9.2 File Discovery Modes
	Mode
	Latency
	Cost
	Best For

	**Directory Listing**
	Higher
	Lower
	Small directories

	**Notifications**
	Lower
	Higher
	Large directories, real-time



# Directory listing mode (default)
.option("cloudFiles.useNotifications", "false")
.option("cloudFiles.useIncrementalListing", "auto")

# Notification mode (recommended for production)
.option("cloudFiles.useNotifications", "true")
.option("cloudFiles.queueUrl", "https://sqs.region.amazonaws.com/...")  # AWS
# or
.option("cloudFiles.queueName", "my-queue")  # Azure
9.3 Handling Large File Volumes
@dlt.table(name="high_volume_ingest")
def high_volume_ingest():
    """
    Configuration for ingesting millions of files.
    """
    return (
        spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "parquet")

        # Handle many small files
        .option("cloudFiles.maxFilesPerTrigger", "10000")
        .option("cloudFiles.maxBytesPerTrigger", "50g")

        # Optimize for many files
        .option("cloudFiles.useNotifications", "true")

        # Rescue malformed records
        .option("cloudFiles.rescuedDataColumn", "_rescued_data")

        .load("/mnt/landing/high_volume/")
    )
10. Benchmarking
10.1 Benchmark Framework
import time
from datetime import datetime

def benchmark_pipeline(pipeline_id, iterations=3):
    """
    Benchmark pipeline performance across multiple runs.
    """
    results = []

    for i in range(iterations):
        start_time = time.time()

        # Trigger pipeline
        client.pipelines.start_update(
            pipeline_id=pipeline_id,
            full_refresh=True
        )

        # Wait for completion
        client.pipelines.wait_get_update_succeeded(
            pipeline_id=pipeline_id
        )

        duration = time.time() - start_time

        # Collect metrics
        metrics = get_pipeline_metrics(pipeline_id)

        results.append({
            "iteration": i + 1,
            "duration_seconds": duration,
            "records_processed": metrics["total_records"],
            "throughput_records_per_sec": metrics["total_records"] / duration,
            "cluster_dbus": metrics["dbu_consumed"]
        })

    return {
        "pipeline_id": pipeline_id,
        "iterations": iterations,
        "results": results,
        "avg_duration": sum(r["duration_seconds"] for r in results) / len(results),
        "avg_throughput": sum(r["throughput_records_per_sec"] for r in results) / len(results)
    }
10.2 Performance Metrics Collection
-- Pipeline execution metrics from event log
SELECT
    date_trunc('minute', timestamp) as minute,
    details:flow_progress:table_name as table_name,
    SUM(details:flow_progress:metrics:num_output_rows) as rows_written,
    AVG(details:flow_progress:metrics:execution_duration_ms) as avg_duration_ms,
    MAX(details:flow_progress:metrics:execution_duration_ms) as max_duration_ms
FROM event_log(TABLE(catalog.schema.pipeline_events))
WHERE event_type = 'flow_progress'
  AND timestamp >= current_timestamp() - INTERVAL 1 HOUR
GROUP BY 1, 2
ORDER BY 1 DESC;


-- Throughput over time
SELECT
    date_trunc('hour', timestamp) as hour,
    SUM(details:flow_progress:metrics:num_output_rows) as total_rows,
    SUM(details:flow_progress:metrics:num_output_rows) / 3600.0 as rows_per_second
FROM event_log(TABLE(catalog.schema.pipeline_events))
WHERE event_type = 'flow_progress'
GROUP BY 1
ORDER BY 1 DESC;
10.3 A/B Testing Configurations
def ab_test_configurations(config_a, config_b, data_sample):
    """
    Compare two configurations on the same data.
    """
    # Create test pipelines
    pipeline_a = create_test_pipeline(config_a, "test_a")
    pipeline_b = create_test_pipeline(config_b, "test_b")

    # Run benchmarks
    results_a = benchmark_pipeline(pipeline_a, iterations=3)
    results_b = benchmark_pipeline(pipeline_b, iterations=3)

    # Compare
    comparison = {
        "config_a": config_a,
        "config_b": config_b,
        "results_a": results_a,
        "results_b": results_b,
        "throughput_improvement": (
            results_b["avg_throughput"] - results_a["avg_throughput"]
        ) / results_a["avg_throughput"] * 100,
        "duration_improvement": (
            results_a["avg_duration"] - results_b["avg_duration"]
        ) / results_a["avg_duration"] * 100
    }

    # Cleanup
    delete_test_pipeline(pipeline_a)
    delete_test_pipeline(pipeline_b)

    return comparison
11. Profiling and Debugging
11.1 Query Plan Analysis
# Explain query plan for optimization
def analyze_query_plan(table_name):
    """
    Analyze query execution plan for optimization opportunities.
    """
    df = spark.table(table_name)

    # Get logical plan
    print("=== Logical Plan ===")
    df.explain(mode="simple")

    # Get physical plan with costs
    print("\n=== Physical Plan with Costs ===")
    df.explain(mode="cost")

    # Get full extended plan
    print("\n=== Extended Plan ===")
    df.explain(mode="extended")
11.2 Stage-Level Profiling
-- Analyze stage execution from Spark UI metrics
-- (Access via Spark UI in Databricks)

-- Check for:
-- 1. Skewed tasks (some tasks much longer than others)
-- 2. Shuffle spill (writing shuffle data to disk)
-- 3. GC time (excessive garbage collection)
11.3 Memory Profiling
def profile_memory_usage(df, sample_fraction=0.01):
    """
    Profile memory usage of a DataFrame.
    """
    # Sample for estimation
    sample = df.sample(fraction=sample_fraction)

    # Estimate size
    sample_size = sample.cache().count()
    estimated_total = int(sample_size / sample_fraction)

    # Get schema size estimate
    schema_info = []
    for field in df.schema.fields:
        schema_info.append({
            "column": field.name,
            "type": str(field.dataType),
            "nullable": field.nullable
        })

    return {
        "estimated_row_count": estimated_total,
        "sample_row_count": sample_size,
        "column_count": len(df.columns),
        "schema": schema_info,
        "partition_count": df.rdd.getNumPartitions()
    }
12. Cost-Performance Trade-offs
12.1 Trade-off Matrix
	Configuration
	Cost
	Performance
	Best For

	Small cluster, longer runtime
	Lower
	Lower
	Cost-sensitive batch

	Large cluster, shorter runtime
	Higher
	Higher
	Time-sensitive batch

	Continuous pipeline
	Medium
	Low latency
	Real-time requirements

	Triggered pipeline
	Lower
	Higher latency
	Scheduled batch

	Photon enabled
	Higher DBU rate
	2-8x faster
	SQL-heavy workloads



12.2 Cost Optimization Strategies
def optimize_for_cost(current_config, target_cost_reduction=0.2):
    """
    Suggest cost optimizations while maintaining acceptable performance.
    """
    recommendations = []

    # Strategy 1: Use spot instances
    if not current_config.get("use_spot"):
        recommendations.append({
            "change": "Enable spot instances for workers",
            "estimated_savings": "50-70%",
            "risk": "Job interruption possible"
        })

    # Strategy 2: Right-size cluster
    utilization = get_cluster_utilization(current_config)
    if utilization["cpu_avg"] < 50:
        recommendations.append({
            "change": "Reduce cluster size",
            "estimated_savings": f"{int((1 - utilization['cpu_avg']/70) * 100)}%",
            "risk": "May increase runtime"
        })

    # Strategy 3: Optimize trigger interval
    if current_config.get("continuous"):
        recommendations.append({
            "change": "Switch to triggered execution",
            "estimated_savings": "30-50%",
            "risk": "Increased latency"
        })

    return recommendations
12.3 Performance SLA Planning
	SLA Tier
	Latency Target
	Cost Tier
	Configuration

	**Real-time**
	< 1 minute
	High
	Continuous, large cluster

	**Near real-time**
	< 15 minutes
	Medium
	Triggered every 10 min

	**Standard**
	< 1 hour
	Low
	Triggered hourly

	**Batch**
	< 24 hours
	Lowest
	Triggered daily, small cluster
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